
The Complete Guide to 
Artificial Intelligence 
in Radiology

6 6

6

@
@ 6

@
6

6

ee

6
@

6

6

@ @

6

6
6

@

e

Digital Solutions



Calantic™ Digital Solutions The Complete Guide to Artificial Intelligence in Radiology

2

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 03

The case for artificial intelligence in radiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .04

Fundamentals of artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .05
Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 05

Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 06

Neural networks and deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 06

Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 06

Internal and external validity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07

Guidelines for evaluating AI research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 07

Clinical uses.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .08
Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 08

Protocolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 08

Image quality improvement and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 09

Scan reading prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Image interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Neurology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Breast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Cardiac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Musculoskeletal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Abdomen and pelvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Obstacles to implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 
Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Risk of bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Data quantity, quality and variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Data protection and privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

IT infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Lack of standardization, interoperability, and integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Brittleness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Making purchasing decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Future trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Calantic™ Digital Solutions The Complete Guide to Artificial Intelligence in Radiology

3

Introduction

Artificial intelligence (AI) is playing a growing role in all 

our lives and has shown promise in addressing some of 

the greatest current and upcoming societal challenges 

we face. The healthcare industry, though notoriously 

complex and resistant to disruption, potentially has 

a lot to gain from the use of AI. With an established 

history of leading digital transformation in healthcare 

and an urgent need for improved efficiency, radiology 

has been at the forefront of harnessing AI’s potential. 

This book covers how and why AI can address 

challenges faced by radiology departments, provides 

an overview of the fundamental concepts related 

to AI, and describes some of the most promising 

use cases for AI in radiology. In addition, the major 

challenges associated with the adoption of AI into 

routine radiological practice are discussed. The book 

also covers some crucial points radiology departments 

should keep in mind when deciding on which AI-based 

solutions to purchase. Finally, it provides an outlook 

on what new and evolving aspects of AI in radiology to 

expect in the near future. 



Calantic™ Digital Solutions The Complete Guide to Artificial Intelligence in Radiology

4

The case for artificial intelligence 
in radiology

The healthcare industry has experienced a number 

of trends over the past few decades that demand 

a change in the way certain things are done. These 

trends are particularly salient in radiology, where the 

diagnostic quality of imaging scans has improved 

dramatically while scan times have decreased. As a 

result, the amount and complexity of medical imaging 

data acquired have increased substantially over the 

past few decades (Smith-Bindman et al., 2019; Winder 

et al., 2021) and are expected to continue to increase 

(Tsao, 2020). This issue is complicated by a widespread 

global shortage of radiologists (AAMC Report Reinforces 

Mounting Physician Shortage, 2021, Clinical Radiology 

UK Workforce Census 2019 Report, 2019). Healthcare 

workers, including radiologists, have an increasing 

workload (Bruls & Kwee, 2020; Levin et al., 2017) that 

contributes to burnout and medical errors (Harry et al., 

2021). Being an essential service provider to virtually 

all other hospital departments, staff shortages 

within radiology have significant effects that spread 

throughout the hospital and to society as a whole 

(England & Improvement, 2019; Sutherland et al., n.d.). 

With an ageing global population and a rising burden 

of chronic illnesses, these issues are expected to pose 

even more of a challenge to the healthcare industry in 

the future. 

AI-based medical imaging solutions have the potential 

to ameliorate these challenges for several reasons. 

They are particularly suited to handling large, complex 

datasets (Alzubaidi et al., 2021). Moreover, they are 

well suited to automate some of the tasks traditionally 

performed by radiologists and radiographers, 

potentially freeing up time and making workflows 

within radiology departments more efficient (Allen et 

al., 2021; Baltruschat et al., 2021; Kalra et al., 2020; 

O’Neill et al., 2021; van Leeuwen et al., 2021; Wong 

et al., 2019). AI is also capable of detecting complex 

patterns in data that humans cannot necessarily find 

or quantify (Dance, 2021; Korteling et al., 2021; Kühl 

et al., 2020).
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Fundamentals of artificial 
intelligence 

The term “artificial intelligence” refers to the use of 

computer systems to solve specific problems in a way 

that simulates human reasoning. One fundamental 

characteristic of AI is that, like humans, these systems 

can tailor their solutions to changing circumstances. 

Note that, while these systems are meant to mimic on 

a fundamental level how humans think, their capacity 

to do so (e.g. in terms of the amount of data they can 

handle at one time, the nature and amount of patterns 

they can find in the data, and the speed at which they 

do so) often exceeds that of humans. 

AI solutions come in the form of computer algorithms, 

which are pieces of computer code representing 

instructions to be followed to solve a specific problem. 

In its most fundamental form, the algorithm takes 

data as an input, performs some computation on that 

data, and returns an output.

An AI algorithm can be explicitly programmed to solve 

a specific task, analogous to a step-by-step recipe for 

baking a cake. On the other hand, the algorithm can 

be programmed to look for patterns within the data in 

order to solve the problem. These types of algorithms 

are known as machine learning algorithms. Thus, 

all machine learning algorithms are AI, but not all AI 

is machine learning. The patterns in the data that the 

algorithm can be explicitly programmed to look for or 

that it can “discover” by itself are known as features. 

An important characteristic of machine learning is that 

such algorithms learn from the data itself, and their 

performance improves the more data they are given. 

One of the most common uses of machine learning is 

in classification - assigning a piece of data a particular 

label. For example, a machine learning algorithm might 

be used to tell if a photo (the input) shows a dog or a 

cat (the label). The algorithm can learn to do so in a 

supervised or unsupervised way.

Supervised learning
In supervised learning, the machine learning algorithm 

is given data that has been labelled with the ground 

truth, in this example, photos of dogs and cats that 

have been labelled as such. The process then goes 

through the following phases:

1. Training phase: The algorithm learns the 

features associated with dogs and cats using the 

aforementioned data (training data).

2. Test phase: The algorithm is then given a new 

set of photos (the test data), it labels them and 

the performance of the algorithm on that data is 

assessed. 

In some cases, there is a phase in between training and 

test, known as the validation phase. In this phase, the 

algorithm is given a new set of photos (not included 

in either the training or test data), its performance 

is assessed on this data, and the model is tweaked 

and retrained on the training data. This is repeated 

until some predefined performance-based criterion is 

reached, and the algorithm then enters the test phase. 



Calantic™ Digital Solutions The Complete Guide to Artificial Intelligence in Radiology

6

Unsupervised learning
In unsupervised learning, the algorithm identifies 

features within the input data that allow it to assign 

classes to the individual data points without being told 

explicitly what those classes are or should be. Such 

algorithms can identify patterns or group data points 

together without human intervention and include 

clustering and dimensionality reduction algorithms. 

Not all machine learning algorithms perform 

classification. Some are used to predict a continuous 

metric (e.g. the temperature in four weeks’ time) instead 

of a discrete label (e.g. cats vs dogs). These are known 

as regression algorithms. 

Neural networks and deep learning
A neural network is made up of an input layer and an 

output layer, which are themselves composed of nodes. 

In simple neural networks, features that are manually 

derived from a dataset are fed into the input layer, 

which performs some computations, the results of 

which are relayed to the output layer. In deep learning, 

multiple “hidden” layers exist between the input and 

output layers. Each node of the hidden layers performs 

calculations using certain weights and relays the 

output to the next hidden layer until the output layer 

is reached. 

In the beginning, random values are assigned to the 

weights and the accuracy of the algorithm is calculated. 

The values of the weights are then iteratively adjusted 

until a set of weight values that maximize accuracy 

is found. This iterative adjustment of the weight 

values is usually done by moving backwards from 

the output layer to the input layer, a technique called 

backpropagation. This entire process is done on the 

training data. 

Performance evaluation
Understanding how the performance of AI algorithms 

is assessed is key to interpreting the AI literature. 

Several performance metrics exist for assessing how 

well a model performs certain tasks. No single metric is 

perfect, so a combination of several metrics provides a 

fuller picture of model performance.

In regression, the most commonly used metrics include:

 ¡  Mean absolute error (MAE): the average difference 

between the predicted values and the ground 

truth.

 ¡  Root mean square error (RMSE): the differences 

between the predicted values and the ground 

truth are squared and then averaged over the 

sample. Then the square root of the average is 

taken. Unlike the MAE, the RMSE thus gives higher 

weight to larger differences. 

 ¡  R2: the proportion of the total variance in the 

ground truth explained by the variance in the 

predicted values. It ranges from 0 to 1. 

The following metrics are commonly used in 

classification tasks:

 ¡  Accuracy: this is the proportion of all predictions 

that were predicted correctly. It ranges from 0 to 1. 

 ¡  Sensitivity: also known as the true positive rate 

(TPR) or recall, this is the proportion of true 

positives that were predicted correctly. It ranges 

from 0 to 1. 

 ¡  Specificity: Also known as the true negative rate 

(TNR), this is the proportion of true negatives that 

were predicted correctly. It ranges from 0 to 1. 

 ¡  Precision: also known as positive predictive 

value (PPV), this is the proportion of positive 

classifications that were predicted correctly. It 

ranges from 0 to 1. 

An inherent trade-off exists between sensitivity and 

specificity. The relevant importance of each, as well 

as their interpretation, highly depends on the specific 

research question and classification task. 

Importantly, although classification models are meant 

to reach a binary conclusion, they are inherently 

probability-based. This means that these models will 

output a probability that a data point belongs to one 

class or another. In order to reach a conclusion on the 

most likely class, a threshold is used. Metrics such as 

accuracy, sensitivity, specificity and precision refer to 

the performance of the algorithm based on a certain 

threshold. The area under the receiver operating 
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characteristic curve (AUC) is a threshold-independent 

performance metric. The AUC can be interpreted as the 

probability that a random positive example is ranked 

higher by the algorithm than a random negative 

example. 

In image segmentation tasks, which are a type of 

classification task, the following metrics are commonly 

used:

 ¡  Dice similarity coefficient: a measure of overlap 

between two sets (e.g. two images) that is 

calculated as two times the number of elements 

common to the sets divided by the sum of the 

number of elements in each set. It ranges from 0 

(no overlap) to 1 (perfect overlap). 

 ¡  Hausdorff distance: a measure of how far two 

sets (e.g. two images) within a space are far from 

each other. It is basically the largest distance from 

one point in one set to the closest point in the 

other set. 

Internal and external validity
Internally valid models perform well in their task on the 

data being used to train and validate them. The degree 

to which they are internally valid is assessed using the 

performance metrics outlined above and depends on 

the characteristics of the model itself and the quality of 

the data that the model was trained and validated on. 

Externally valid models perform well in their tasks on 

new data (Ramspek et al., 2021). The better the model 

performs on data that differs from the data the models 

were trained and validated on, the higher the external 

validity. In practice, this often requires the performance 

of the models to be tested on data from hospitals or 

geographical areas that were not part of the model’s 

training and validation datasets.

Guidelines for evaluating AI research
Several guidelines have been developed to assess the 

evidence behind AI-based interventions in healthcare 

(X. Liu et al., 2020; Mongan et al., 2020; Shelmerdine et 

al., 2021; Weikert et al., 2021). These provide a template 

for those doing AI research in healthcare and ensure 

that relevant information is reported transparently 

and comprehensively, but can also be used by other 

stakeholders to assess the quality of published 

research. This helps ensure that AI-based solutions with 

substantial potential or actual limitations, particularly 

those caused by poor reporting (Bozkurt et al., 2020; 

D. W. Kim et al., 2019; X. Liu et al., 2019; Nagendran 

et al., 2020; Yusuf et al., 2020), are not prematurely 

adopted (CONSORT-AI and SPIRIT-AI Steering Group, 

2019). Guidelines have also been proposed for 

evaluating the trustworthiness of AI-based solutions 

in terms of transparency, confidentiality, security, and 

accountability (Buruk et al., 2020; Lekadir et al., 2021; 

Zicari et al., 2021).
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Clinical uses 

Over the past few years, AI has shown great potential 

in addressing a broad range of tasks within a medical 

imaging department, including many that happen 

before the patient is scanned. Implementations of 

AI to improve the efficiency of radiology workflows 

prior to patient scanning are sometimes referred to as 

“upstream AI” (Kapoor et al., 2020; M. L. Richardson et 

al., 2021).

Scheduling
One promising upstream AI application is predicting 

which patients are likely to miss their scan appointments. 

Missed appointments are associated with significantly 

increased workload and costs (Dantas et al., 2018). 

Using a Gradient Boosting approach, Nelson et al. 

predicted missed hospital magnetic resonance imaging 

(MRI) appointments in the United Kingdom’s National 

Health Service (NHS) with high accuracy (Nelson 

et al., 2019). Their simulations also suggested that 

acting on the predictions of this model by targeting 

patients who are likely to miss their appointments 

would potentially yield a net benefit of several pounds 

per appointment across a range of model thresholds 

and missed appointment rates (Nelson et al., 2019). 

Similar results were recently found in a study of a single 

hospital in Singapore. For the 6-month period following 

the deployment of the predictive tool they were able 

to significantly reduce the no show rate from 19.3 % 

tp 15.9 % which translated into a potential economic 

benefit of $180,000 (Chong et. al., 2020). 

Scheduling scans in a radiology department is a 

challenging endeavour because, although it is largely 

an administrative task, it depends heavily on medical 

information. The task of assigning patients to specific 

appointments thus often requires the input of someone 

with domain knowledge, which stipulates that either 

the person making the appointments must be a 

radiologist or radiology technician, or these people will 

have to provide input regularly. In either scenario, the 

process is somewhat inefficient and can potentially 

be streamlined using AI-based algorithms that check 

scan indications and contraindications and provide the 

people scheduling the scans with information about 

scan urgency (Letourneau-Guillon et al., 2020). 

Protocolling
Depending on hospital or clinic policy, the decision on 

what exact scan protocol a patient receives is usually 

made based on the information on the referring 

physician’s scan request and the judgement of the 

radiologist. This is often supplemented by direct 

communication between the referring physician and 

radiologist and the radiologist’s review of the patient’s 

medical information. This process improves patient 

care (Boland et al., 2014) but can be time-consuming 

and inefficient, particularly with modalities like MRI, 

where a large number of protocol permutations exist. 

In one study, protocolling alone accounted for about 

6 % of the radiologist’s working time (Schemmel et al., 

2016). Radiologists are also often interrupted by tasks 

such as protocolling when interpreting images, despite 

the fact that the latter is considered a radiologist’s 

primary responsibility (Balint et al., 2014; J.-P. J. Yu et 

al., 2014). 

Interpretation of the narrative text of the referring 

physician’s scan request has been attempted using 

natural language classifiers, the same technology used 

in chatbots and virtual assistants. Natural language 
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classifiers based on deep learning have shown promise 

in assigning patients to either a contrast-enhanced or 

non-enhanced MRI protocol for musculoskeletal MRI, 

with an accuracy of 83 % (Trivedi et al., 2018) and 94 % 

(Y. H. Lee, 2018). Similar algorithms have shown an 

accuracy of 95 % for predicting the appropriate brain 

MRI protocol using a combination of up to 41 different 

MRI sequences (Brown & Marotta, 2018). Across a wide 

range of body regions, a deep-learning-based natural 

language classifier decided based on the narrative text 

of the scan requests whether to automatically assign 

a specific computed tomography (CT) or MRI protocol 

(which it did with 95 % accuracy) or, in more difficult 

cases, recommend a list of three most appropriate 

protocols to the radiologist (which it did with 92 % 

accuracy) (Kalra et al., 2020). 

AI has also been used to decide whether already 

protocolled scans need to be extended, a decision which 

has to be made in real-time while the patient is inside 

the scanner. One such example is in prostate MRI, where 

a decision on whether to administer a contrast agent is 

often made after the non-contrast sequences. Hötker 

et al. found that a convolutional neural network (CNN) 

assigned 78 % of patients to the appropriate prostate 

MRI protocol (Hötker et al., 2021). The sensitivity of 

the CNN for the need for contrast was 94.4 % with a 

specificity of 68.8 % and only 2 % of patients in their 

study would have had to be called back for a contrast-

enhanced scan (Hötker et al., 2021). 

Image quality improvement and 
monitoring
Many AI-based solutions that work in the background 

of radiology workflows to improve image quality have 

recently been established. These include solutions for 

monitoring image quality, reducing image artefacts, 

improving spatial resolution, and speeding up scans. 

Such solutions are entering the radiology mainstream, 

particularly for computed tomography, which for 

decades used established but artefact-prone methods 

for reconstructing interpretable images from the raw 

sensor data (Deák et al., 2013; Singh et al., 2010). 

These are gradually being replaced by deep-learning-

based reconstruction methods, which improve image 

quality while maintaining low radiation doses (Akagi 

et al., 2019; H. Chen et al., 2017; Choe et al., 2019; 

Shan et al., 2019). This reconstruction is performed 

on supercomputers on the CT scanner itself or on the 

cloud. The balance between radiation dose and image 

quality can be adjusted on a protocol-specific basis to 

tailor scans to individual patients and clinical scenarios 

(McLeavy et al., 2021; Willemink & Noël, 2019). Such 

approaches have found particular use when scanning 

children, pregnant women, and obese patients as well 

as CT scans of the urinary tract and heart (McLeavy et 

al., 2021).

 

AI-based solutions have also been used to speed up 

scans while maintaining diagnostic quality. Scan time 

reduction not only improves overall efficiency but also 

contributes to an overall better patient experience 

and compliance with imaging examination. A multi-

centre study of spine MRI showed that a deep-learning-

based image reconstruction algorithm that enhanced 

images using filtering and detail-preserving noise 

reduction reduced scan times by 40 % (Bash, Johnson, 

et al., 2021). For T1-weighted MRI scans of the brain, a 

similar algorithm that improves image sharpness and 

reduces image noise reduced scan times by 60 % while 

maintaining the accuracy of brain region volumetry 

compared to standard scans (Bash, Wang, et al., 2021). 

In routine radiological practice, images often contain 

artefacts that reduce their interpretability. These 

artefacts are the result of characteristics of the specific 

imaging modality or protocol used or factors intrinsic 

to the patient being scanned, such as the presence of 

foreign bodies or the patient moving during the scan. 

Particularly with MRI, imaging protocols that demand 

fast scanning often introduce certain artefacts to the 

reconstructed image. In one study, a deep-learning-

based algorithm reduced banding artefacts associated 

with balanced steady-state free precession MRI 

sequences of the brain and knee (K. H. Kim & Park, 2017). 

For real-time imaging of the heart using MRI, another 

study found that the aliasing artefacts introduced 
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by the data undersampling were reduced by using a 

deep-learning-based approach (Hauptmann et al., 

2019). The presence of metallic foreign bodies such as 

dental, orthopaedic or vascular implants is a common 

patient-related factor causing image artefacts in both 

CT and MRI (Boas & Fleischmann, 2012; Hargreaves et 

al., 2011). Although not yet well established, several 

deep-learning-based approaches for reducing these 

artefacts have been investigated (Ghani & Clem Karl, 

2019; Puvanasunthararajah et al., 2021; Zhang & Yu, 

2018). Similar approaches are being tested for reducing 

motion-related artefacts in MRI (Tamada et al., 2020; 

B. Zhao et al., 2022). 

AI-based solutions for monitoring image quality 

potentially reduce the need to call patients back to 

repeat imaging examinations, which is a common 

problem (Schreiber-Zinaman & Rosenkrantz, 2017). 

A deep-learning-based algorithm that identifies the 

radiographic view acquired and extracts quality-related 

metrics from ankle radiographs was able to predict 

image quality with about 94 % accuracy (Mairhöfer et 

al., 2021). Another deep-learning-based approach was 

capable of predicting nondiagnostic liver MRI scans 

with a negative predictive value of between 86 % and 

94 % (Esses et al., 2018). This real-time automated 

quality control potentially allows radiology technicians 

to rerun scans or run additional scans with greater 

diagnostic value. 

Scan reading prioritization 
With staff shortages and increasing scan numbers, 

radiologists face long reading lists. To optimize 

efficiency and patient care, AI-based solutions have 

been suggested as a way to prioritize which scans 

radiologists read and report first, usually by screening 

acquired images for findings that require urgent 

intervention (O’Connor & Bhalla, 2021). This has been 

most extensively studied in neuroradiology, where 

moving CT scans that were found to have intracranial 

haemorrhage by an AI-based tool to the top of the 

reading list reduced the time it took radiologists to 

view the scans by several minutes (O’Neill et al., 2021). 

Another study found that the time-to diagnosis (which 

includes the time from image acquisition to viewing 

by the radiologist and the time to read and report 

the scans) was reduced from 512 to 19 minutes in an 

outpatient setting when such a worklist prioritization 

was used (Arbabshirani et al., 2018). A simulation 

study using AI-based worklist prioritization based 

on identifying urgent findings on chest radiographs 

(such as pneumothorax, pleural effusions, and foreign 

bodies) also found a substantial reduction in the time it 

took to view and report the scans compared to standard 

workflow prioritization (Baltruschat et al., 2021). 

Image interpretation 
Currently, the majority of commercially available AI-

based solutions in medical imaging focus on some 

aspect of analyzing and interpreting images (Rezazade 

Mehrizi et al., 2021; van Leeuwen et al., 2021). This 

includes segmenting parts of the image (for surgical 

or radiation therapy targeting, for example), bringing 

suspicious areas to radiologists’ attention, extracting 

imaging biomarkers (radiomics), comparing images 

across time, and reaching specific imaging diagnoses. 

Neurology
 ¡  29–38 % of commercially available AI-based 

applications in radiology (Rezazade Mehrizi et al., 

2021; van Leeuwen et al., 2021).

Most commercially available AI-based solutions 

targeted at neuroimaging data aim to detect and 

characterize ischemic stroke, intracranial haemorrhage, 

dementia, and multiple sclerosis (Olthof et al., 2020). 

Several studies have shown excellent accuracy of AI-

based methods for the detection and classification 

of intraparenchymal, subarachnoid, and subdural 

haemorrhage on head CT (Flanders et al., 2020; Ker et 

al., 2019; Kuo et al., 2019). Subsequent studies showed 

that, compared to radiologists, some AI-based solutions 

have substantially lower false positive and negative 

rates (Ginat, 2020; Rao et al., 2021). In ischemic 

stroke, AI-based solutions have largely focused on 

the quantification of the infarct core (Goebel et al., 

2018; Maegerlein et al., 2019), the detection of large 

vessel occlusion (Matsoukas et al., 2022; Morey et al., 
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2021; Murray et al., 2020; Shlobin et al., 2022), and 

the prediction of stroke outcomes (Bacchi et al., 2020; 

Nielsen et al., 2018; Y. Yu et al., 2020, 2021).

In multiple sclerosis, AI has been used to identify 

and segment lesions (Nair et al., 2020; S.-H. Wang et 

al., 2018), which can be particularly helpful for the 

longitudinal follow-up of patients. It has also been used 

to extract imaging features associated with progressive 

disease and conversion from clinically isolated 

syndrome to definite multiple sclerosis (Narayana et 

al., 2020; Yoo et al., 2019). Other applications of AI in 

neuroradiology include the detection of intracranial 

aneurysms (Faron et al., 2020; Nakao et al., 2018; Ueda 

et al., 2019) and the segmentation of brain tumours 

(Kao et al., 2019; Mlynarski et al., 2019; Zhou et al., 

2020) as well as the prediction of brain tumour genetic 

markers from imaging data (Choi et al., 2019; J. Zhao 

et al., 2020)

Chest
 ¡  24 %–31 % of commercially available AI-based 

applications in radiology (Rezazade Mehrizi et al., 

2021; van Leeuwen et al., 2021). 

When interpreting chest radiographs, radiologists 

detected substantially more critical and urgent findings 

when aided by a deep-learning-based algorithm, and 

did so much faster than without the algorithm (Nam 

et al., 2021). Deep-learning-based image interpretation 

algorithms have also been found to improve radiology 

residents’ sensitivity for detecting urgent findings on 

chest radiographs from 66 % to 73 % (E. J. Hwang, Nam, 

et al., 2019). Another study which focused on a broader 

range of findings on chest radiographs also found that 

radiologists aided by a deep-learning-based algorithm 

had higher diagnostic accuracy than radiologists who 

read the radiographs without assistance (Seah et al., 

2021). The uses of AI in chest radiology also extend 

to cross-sectional imaging like CT. A deep learning 

algorithm was found to detect pulmonary embolism 

on CT scans with high accuracy (AUC = 0.85) (Huang, 

Kothari, et al., 2020). Moreover, a deep learning 

algorithm was 90 % accurate in detecting aortic 

dissection on non-contrast-enhanced CT scans, similar 

to the performance of radiologists (Hata et al., 2021). 

Outside the emergency setting, AI-based solutions have 

been widely tested and implemented for tuberculosis 

screening on chest radiographs (E. J. Hwang, Park, et 

al., 2019; S. Hwang et al., 2016; Khan et al., 2020; 

Qin et al., 2019; WHO Operational Handbook on 

Tuberculosis Module 2: Screening – Systematic Screening 

for Tuberculosis Disease, n.d.). In addition, they have 

been useful for lung cancer screening both in terms of 

detecting lung nodules on CT (Setio et al., 2017) and 

chest radiographs (Li et al., 2020) and by classifying 

whether nodules are likely to be malignant or benign 

(Ardila et al., 2019; Bonavita et al., 2020; Ciompi et al., 

2017; B. Wu et al., 2018). AI-based solutions also show 

great promise for the diagnosis of pneumonia, chronic 

obstructive pulmonary disease, and interstitial lung 

disease (F. Liu et al., 2021). 

Breast
 ¡  11 % of commercially available AI-based applications 

in radiology (Rezazade Mehrizi et al., 2021; van 

Leeuwen et al., 2021). 

So far, many of the AI-based algorithms targeting breast 

imaging aim to reduce the workload of radiologists 

reading mammograms. Ways to do this have included 

using AI-based algorithms to triage out negative 

mammograms, which in one study was associated 

with a reduction in radiologists’ workload by almost 

one-fifth (Yala et al., 2019). Other studies that have 

replaced second readers of mammograms with AI-

based algorithms have shown that this leads to fewer 

false positives and false negatives as well as reduces 

the workload of the second reader by 88 % (McKinney 

et al., 2020). 

AI-based solutions for mammography have also 

been found to increase the diagnostic accuracy of 

radiologists (McKinney et al., 2020; Rodríguez-Ruiz et 

al., 2019; Watanabe et al., 2019) and some have been 

found to be highly accurate in independently detecting 

and classifying breast lesions (Agnes et al., 2019; Al-

Antari et al., 2020; Rodriguez-Ruiz et al., 2019). 

Despite this, a recent systematic review of 36 AI-

based algorithms found that these studies were of 

poor methodological quality and that all algorithms 

were less accurate than the consensus of two or more 
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radiologists (Freeman et al., 2021). AI-based algorithms 

have nonetheless shown potential for extracting 

cancer-predictive features from mammograms 

beyond mammographic breast density (Arefan et al., 

2020; Dembrower et al., 2020; Hinton et al., 2019). 

Beyond mammography, AI-based solutions have been 

developed for detecting and classifying breast lesions 

on ultrasound (Akkus et al., 2019; Park et al., 2019; G.-

G. Wu et al., 2019) and MRI (Herent et al., 2019).

Cardiac
 ¡  11 % of commercially available AI-based applications 

in radiology (Rezazade Mehrizi et al., 2021; van 

Leeuwen et al., 2021).

Cardiac radiology has always been particularly 

challenging because of the difficulties inherent in 

acquiring images of a constantly moving organ. 

Because of this, it has benefited immensely from 

advances in imaging technology and seems set to 

benefit greatly from AI as well (Sermesant et al., 2021). 

Most of the AI-based applications of the cardiovascular 

system use MRI, CT or ultrasound data (Weikert et al., 

2021). Prominent examples include the automated 

calculation of ejection fraction on echocardiography, 

quantification of coronary artery calcification on 

cardiac CT, determination of right ventricular volume 

on CT pulmonary angiography, and determination 

of heart chamber size and thickness on cardiac MRI 

(Medical AI Evaluation, n.d., The Medical Futurist, n.d.). 

AI-based solutions for the prediction of patients 

likely to respond favourably to cardiac interventions, 

such as cardiac resynchronization therapy, based on 

imaging and clinical parameters have also shown great 

promise (Cikes et al., 2019; Hu et al., 2019). Changes 

in cardiac MRI not readily visible to human readers but 

potentially useful for differentiating different types 

of cardiomyopathies can also be detected using AI 

through texture analysis (Neisius et al., 2019; J. Wang 

et al., 2020) and other radiomic approaches (Mancio et 

al., 2022).

Musculoskeletal 
 ¡  7–11 % of commercially available AI-based 

applications in radiology (Rezazade Mehrizi et al., 

2021; van Leeuwen et al., 2021). 

Promising applications of AI in the assessment of 

muscles, bones and joints include applications where 

human readers generally show poor between- and 

within-rater reliability, such as the determination of 

skeletal age based on bone radiographs (Halabi et 

al., 2019; Thodberg et al., 2009) and screening for 

osteoporosis on radiographs (Kathirvelu et al., 2019; 

J.-S. Lee et al., 2019) and CT (Pan et al., 2020). AI-

based solutions have also shown promise for detecting 

fractures on radiographs and CT (Lindsey et al., 

2018; Olczak et al., 2017; Urakawa et al., 2019). One 

systematic review of AI-based solutions for fracture 

detection in several different body parts showed AUCs 

ranging from 0.94 to 1.00 and accuracies of 77 % to 

98 % (Langerhuizen et al., 2019). AI-based solutions 

have also achieved accuracies similar to radiologists for 

classification of the severity of degenerative changes 

of the spine (Jamaludin et al., 2017) and extremity 

joints (F. Liu et al., 2018; Thomas et al., 2020). AI-based 

solutions have also been developed to determine the 

origin of skeletal metastases (Lang et al., 2019) and the 

classification of primary bone tumours (Do et al., 2017).

Abdomen and pelvis
 ¡  4 % of commercially available AI-based applications 

in radiology (Rezazade Mehrizi et al., 2021; van 

Leeuwen et al., 2021).

Much of the efforts in using AI in abdominal imaging 

have thus far concentrated on the automated 

segmentation of organs such as the liver (Dou et al., 

2017), spleen (Moon et al., 2019), pancreas (Oktay 

et al., 2018), and kidneys (Sharma et al., 2017). In 

addition, a systematic review of 11 studies using deep 

learning for the detection of malignant liver masses 

showed accuracies of up to 97 % and AUCs of up to 0.92 

(Azer, 2019). 

Other applications of AI in abdominal radiology include 

the detection of liver fibrosis (He et al., 2019; Yasaka et 

al., 2018), fatty liver disease, hepatic iron content, the 

detection of free abdominal gas on CT, and automated 

volumetry and segmentation of the prostate (AI for 

Radiology, n.d.). 
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Obstacles to implementation 

Despite the great potential of AI in medical imaging, 

it has yet to find widespread implementation and 

impact in routine clinical practice. This research-to-

clinic translation is being hindered by several complex 

and interrelated issues that directly or indirectly lower 

the likelihood of AI-based solutions being adopted. One 

major way they do so is by creating a lack of trust in AI-

based solutions by key stakeholders such as regulators, 

healthcare professionals and patients (Cadario et al., 

2021; Esmaeilzadeh, 2020; J. P. Richardson et al., 2021; 

Tucci et al., 2022). 

Generalizability
One major challenge is to develop AI-based solutions 

that continue to perform well in new, real-world 

scenarios. In a large systematic review, almost half 

of the studied AI-based medical imaging algorithms 

reported a greater than 0.05 decrease in the AUC when 

tested on new data (A. C. Yu et al., 2022). This lack of 

generalizability can lead to adverse effects on how well 

the model performs in a real-world scenario. 

If a solution performs poorly when tested on a dataset 

with a similar or identical distribution to the training 

dataset, it is said to lack narrow generalizability and is 

often a consequence of overfitting (Eche et al., 2021). 

Potential solutions for overfitting are using larger 

training datasets and reducing the model’s complexity. 

If a solution performs poorly when tested on a dataset 

with a different distribution to the training dataset (e.g. 

a different distribution of patient ethnicities), it is said to 

lack broad generalizability (Eche et al., 2021). Solutions 

to poor broad generalizability include stress-testing the 

model on datasets with different distributions from the 

training dataset (Eche et al., 2021). 

AI solutions are often developed in a high-resource 

environment such as large technology companies 

and academic medical centres in wealthy countries. 

It is likely that findings and performance in these 

high-resource contexts will fail to generalize to lower-

resource contexts such as smaller hospitals, rural areas 

or poorer countries (Price & Nicholson, 2019), which 

complicates the issue further. 

Risk of bias
Biases can arise in AI-based solutions due to data or 

human factors. The former occurs when the data used 

to train the AI solution does not adequately represent 

the target population. Datasets can be unrepresentative 

when they are too small or have been collected in a way 

that misrepresents a certain population category. AI 

solutions trained on unrepresentative data perpetuate 

biases and perform poorly in the population categories 

underrepresented or misrepresented in the training 

data. The presence of such biases has been empirically 

shown in many AI-based medical imaging studies 

(Larrazabal et al., 2020; Seyyed-Kalantari et al., 2021). 

AI-based solutions are prone to several subjective and 

sometimes implicitly or explicitly prejudiced decisions 

during their development by humans. These human 

factors include how the training data is selected, how 

it is labelled, and how the decision is made to focus on 

the specific problem the AI-based solution intends to 

solve (Norori et al., 2021). Some recommendations and 

tools are available to help minimize the risk of bias in AI 

research (AIF360: A Comprehensive Set of Fairness Metrics 

for Datasets and Machine Learning Models, Explanations 

for These Metrics, and Algorithms to Mitigate Bias in 

Datasets and Models, n.d., IBM Watson Studio - Model 

Risk Management, n.d.; Silberg & Manyika, 2019).
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Data quantity, quality and variety
Problems such as bias and lack of generalizability 

can be mitigated by ensuring that training data is of 

sufficient quantity, quality and variety. However, this 

is difficult to do because patients are often reluctant 

to share their data for commercial purposes (Aggarwal, 

Farag, et al., 2021; Ghafur et al., 2020; Trinidad et al., 

2020), hospitals and clinics are usually not equipped 

to make this data available in a useable and secure 

manner, and organizing and labelling the data is time-

consuming and expensive. 

Many datasets can be used for a number of different 

purposes, and sharing data between companies 

can help make the process of data collection and 

organization more efficient, as well as increase the 

amount of data available for each application. However, 

developers are often reluctant to share data with each 

other, or even reveal the exact source of their data, to 

stay competitive. 

Data protection and privacy
The development and implementation of AI-based 

solutions require that patients are explicitly informed 

about, and give their consent to, the use of their data 

for a particular purpose and by certain people. This data 

also has to be adequately protected from data breaches 

and misuse. Failure to ensure this greatly undermines 

the public’s trust in AI-based solutions and hinders 

their adoption. While regulations governing health data 

privacy state that the collection of fully anonymized 

data does not require explicit patient consent (General 

Data Protection Regulation (GDPR) – Official Legal Text, 

2016; Office for Civil Rights (OCR), 2012) and in theory 

protects from the data being misused, whether or not 

imaging data can be fully anonymized is controversial 

(Lotan et al., 2020; Murdoch, 2021). Whether consent 

can be truly informed considering the complexity 

of the data being acquired, and the resulting myriad 

of potential future uses of the data, is also disputed 

(Vayena & Blasimme, 2017). 

IT infrastructure
Among hospital departments, radiology has always 

been at the forefront of digitalization. AI-based solutions 

that focus on image processing and interpretation 

are likely to find the prerequisite infrastructure in 

most radiology departments, for example for linking 

imaging equipment to computers for analysis and for 

archiving images and other outputs. However, most 

radiology departments are likely to require significant 

infrastructure upgrades for other applications of 

AI, particularly those requiring the integration of 

information from multiple sources and having complex 

outputs. Moreover, it is important to keep in mind that 

the distribution of necessary infrastructure is highly 

unequal across and within countries (Health Ethics & 

Governance, 2021).

In terms of computing power, radiology departments 

will either have to invest resources into the hardware 

and personnel necessary to run these AI-based 

solutions or opt for cloud-based solutions. The former 

comes with an extra cost but allows data processing 

within the confines of the hospital or clinic’s local 

network. Cloud-based solutions for computing (known 

as “infrastructure as a service” or “IaaS”) are often 

considered the less secure and less trustworthy option, 

but this depends on a number of factors and is thus not 

always true (Baccianella & Gough, n.d.). Guidelines on 

what to consider when procuring cloud-based solutions 

in healthcare are available (Cloud Security for Healthcare 

Services, 2021). 

Lack of standardization, interoperability, 
and integrability 
The problem of infrastructure becomes even more 

complicated when considering how fragmented the 

AI medical imaging market currently is (Alexander 

et al., 2020). It is therefore likely that in the near 

future a single department will have several dozen 

AI-based solutions from different vendors running 

simultaneously. Having a separate self-contained 

infrastructure (e.g. a workstation or server) for each of 

these would be incredibly complicated and difficult to 

manage. Suggested solutions for this have included AI 
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solution “marketplaces”, similar to app stores (Advanced 

AI Solutions for Radiology, n.d., Curated Marketplace, 

2018, Imaging AI Marketplace - Overview, n.d., Sectra 

Amplifier Marketplace, 2021, The Nuance AI Marketplace 

for Diagnostic Imaging, n.d.), and development of an 

overarching vendor-neutral infrastructure (Leiner et 

al., 2021). The successful implementation of such 

solutions requires close partnerships between AI 

solution developers, imaging vendors and information 

technology companies. 

Interpretability 
It is often impossible to understand exactly how AI-

based solutions come to their conclusions, particularly 

with complex approaches like deep learning. This 

reduces how transparent the decision-making process 

for procuring and approving these solutions can be, 

makes the identification of biases difficult, and makes 

it harder for clinicians to explain the outputs of these 

solutions to their patients and to determine whether 

a solution is working properly or has malfunctioned 

(Char et al., 2018; Reddy et al., 2020; Vayena et al., 

2018; Whittlestone et al., 2019). Some have suggested 

that techniques that help humans understand how AI-

based algorithms made certain decisions or predictions 

(“interpretable” or “explainable” AI) might help mitigate 

these challenges. However, others have argued that 

currently available techniques are unsuitable for 

understanding individual decisions of an algorithm and 

have warned against relying on them for ensuring that 

algorithms work in a safe and reliable way (Ghassemi 

et al., 2021). 

Liability
In healthcare systems, a framework of accountability 

ensures that healthcare workers and medical 

institutions can be held responsible for adverse effects 

resulting from their actions. The question of who 

should be held accountable for the failures of an AI-

based solution is complicated. For pharmaceuticals, for 

example, the accountability for inherent failures in the 

product or its use often lies with either the manufacturer 

or the prescriber. One key difference is that AI-based 

systems are continuously evolving and learning, and so 

inherently work in a way that is independent of what 

their developers could have foreseen (Yeung, 2018). 

To the end-user such as the healthcare worker, the AI-

based solution may be opaque and so they may not 

be able to tell when the solution is malfunctioning or 

inaccurate (Habli et al., 2020; Yeung, 2018). 

Brittleness 
Despite substantial progress in their development over 

the past few years, deep learning algorithms are still 

surprising brittle. This means that, when the algorithm 

faces a scenario that differs substantially from what 

it faced during training, it cannot contextualize and 

often produces nonsensical or inaccurate results. This 

happens because, unlike humans, most algorithms 

learn to perceive things within the confines of certain 

assumptions, but fail to generalize outside these 

assumptions. As an example of how this can be abused 

with malicious intent, subtle changes to medical 

images, imperceptible by humans, can render the 

results of disease-classifying algorithms inaccurate 

(Finlayson et al., 2018). The lack of interpretability 

of many AI-based solutions compounds this problem 

because it makes it difficult to troubleshoot how they 

reached the wrong conclusion. 
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Making purchasing decisions 

So far, more than 100 AI-based products have gained 

conformité européenne (CE) marking or Food and Drug 

Adminstration (FDA) clearance. These products can be 

found in continuously updated and searchable online 

databases curated by the FDA (Center for Devices & 

Radiological Health, n.d.), the American College of 

Radiology (Assess-AI, n.d.), and others (AI for Radiology, 

n.d., The Medical Futurist, n.d.; E. Wu et al., 2021). The 

increasing number of available products, the inherent 

complexity of many of these solutions, and the fact 

that many people who usually make purchasing 

decisions in hospitals are not familiar with evaluating 

such products make it important to think carefully 

when deciding on which product to purchase. Such 

decisions will need to be made after incorporating input 

from healthcare workers, information technology (IT) 

professionals, as well as management, finance, legal, 

and human resources professionals within hospitals. 

Deciding on whether to purchase an AI-based solution 

in radiology, as well as which of the increasing number 

of commercially available solutions to purchase, 

includes considerations of quality, safety, and finances. 

Over the past few years, several guidelines have 

emerged to help potential buyers make these decisions 

(A Buyer’s Guide to AI in Health and Care, 2020; Omoumi 

et al., 2021; Reddy et al., 2021), and these guidelines 

are likely to evolve in the future with changing 

expectations from customers, regulatory bodies, and 

stakeholders involved in reimbursement decisions. 

First of all, it has to be clear to the potential buyer 

what the problem is and whether AI is the appropriate 

approach to this solution, or whether alternatives 

exist that are more advantageous on balance. If AI 

is the appropriate approach, buyers should know 

exactly what a potential AI-based product’s scope of 

the solution is - i.e. what specific problem the AI-based 

solution is designed to solve and in what specific 

circumstances. This includes whether the solution 

is intended for screening, diagnosis, monitoring, 

treatment recommendation or another application. It 

also includes the intended users of the solution and 

what kind of specific qualifications or training they 

are expected to have in order to be able to operate the 

solution and interpret its outputs. It needs to be clear 

to buyers whether the solution is intended to replace 

certain tasks that would normally be performed by 

the end-user, act as a double-reader, as a triaging 

mechanism, or for other tasks like quality control. 

Buyers should also understand whether the solution is 

intended to provide “new” information (i.e. information 

that would otherwise be unavailable to the user 

without the solution), improve the performance of an 

existing task beyond a human’s or other non-AI-based 

solution’s performance or if it is intended to save time 

or other resources. 

Buyers should also have access to information 

that allows them to assess the potential benefits 

of the AI solution, and this should be backed up by 

published scientific evidence for the efficacy and 

cost-efficiency of the solution. How this is done will 

depend highly on the solution itself and the context 

in which it is expected to be deployed, but guidelines 

for this are available (National Institute for Health 

and Care Excellence (NICE), n.d.). Some questions to 

ask here would be: How much of an influence will 

the solution have on patient management? Will it 

improve diagnostic performance? Will it save time and 

money? Will it affect patients’ quality of life? It should 

also be clear to the buyer who exactly is expected to 
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benefit from the use of this solution (Radiologists? 

Clinicians? Patients? The healthcare system or society 

as a whole?). 

As with any healthcare intervention, all AI-based 

solutions come with potential risks, and these should 

be made clear to the buyer. Some of these risks might 

have legal consequences, such as the potential for 

misdiagnosis. These risks should be quantified, and 

potential buyers should have a framework for dealing 

with them, including identifying a framework for 

accountability within the organizations implementing 

these solutions. Buyers should also ensure they 

clearly understand the potential negative effects on 

radiologists’ training and the potential disruption to 

radiologists’ workflows associated with the use of 

these solutions. 

Specifics of the AI solution’s design are also relevant 

to the decision on whether or not to purchase it. These 

include how robust the solution is to differences 

between vendors and scanning parameters, the 

circumstances under which the algorithm was trained 

(including potential confounding factors), and the way 

that performance was assessed. It should also be clear 

to buyers if and how potential sources of bias were 

accounted for during development. Because a core 

characteristic of AI-based solutions is their ability to 

continuously learn from new data, whether and how 

exactly this retraining is incorporated into the solution 

with time should also be clear to the buyer, including 

whether or not new regulatory approval is needed 

with each iteration. This also includes whether or not 

retraining is required, for example, due to changes in 

imaging equipment at the buyer’s institution. 

The main selling points of many AI-based solutions 

are ease-of-use and improved workflows. Therefore, 

potential buyers should carefully scrutinize how 

these solutions are to be integrated into existing 

workflows, including inter-operability with PACS and 

electronic medical record systems. Whether or not 

the solution requires extra hardware (e.g. graphical 

processing units) or software (e.g. for visualization 

of the solution’s outputs), or if it can readily be 

integrated into the existing information technology 

infrastructure of the buyer’s organization influences 

the overall cost of the solution for the buyer and is 

therefore also a critical consideration. In addition, 

the degree of manual interaction required, both 

under normal circumstances and for troubleshooting, 

should be known to the buyer. All potential users of 

the AI solution should be involved in the purchasing 

process to ensure that they are familiar with it and 

that it meets their professional ethical standards and 

suits their needs. 

From a regulatory perspective, it should be clear to 

the buyer whether the solution complies with medical 

device and data protection regulations. Has the 

solution been approved in the buyer’s country? If so, 

under which risk classification? Buyers should also 

consider creating data flow maps that display how the 

data flows in the operation of the AI-based solution, 

including who has access to the data. 

Finally, there are other factors to consider which are 

not necessarily unique to AI-based solutions and which 

buyers might be familiar with from purchasing other 

types of solutions. This includes the licensing model 

of the solution, how users are to be trained on using 

the solution, how the solution is maintained, how 

failures in the solution are dealt with, and whether 

additional costs are to be expected when scaling up 

the solution’s implementation (e.g. using the solution 

for more imaging equipment or more users). This 

allows the potential buyer to anticipate the current 

and future costs of purchasing the solution. 
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Future trends

The past decade of increasing interest and progress 

in AI-based solutions for medical imaging has set the 

stage for a number of trends that are likely to appear 

or intensify in the near future. 

Firstly, there is an increasing sentiment that, although 

AI holds a great deal of promise for interpretive 

applications (such as the detection of pathology), 

non-interpretive AI-based solutions might hold 

the most potential in terms of instilling efficiency 

into radiology workflows and improving patient 

experiences. This trend towards involving AI earlier in 

the patient management process is likely to extend 

to AI increasingly acting as a clinical decision support 

system to guide when and which imaging scans are 

performed. 

For this to happen, AI needs to be integrated into 

existing clinical information systems, and the specific 

algorithms used need to be able to handle more varied 

data. This will likely pave the way for the development 

of algorithms that are capable of integrating 

demographic, clinical, and laboratory patient data to 

make recommendations about patient management 

(Huang, Pareek, et al., 2020; Rockenbach, 2021). The 

previously mentioned natural language processing 

algorithms that have been used to interpret scan 

requests may be useful candidates for this. 

In addition, we are likely to see AI algorithms that 

can interpret multiple different types of imaging data 

from the same patient. Currently, less than 5 % of 

commercially available AI-based solutions in medical 

imaging work with more than one imaging modality 

(Rezazade Mehrizi et al., 2021; van Leeuwen et al., 

2021) despite the fact that the typical patient in a 

hospital receives multiple imaging scans during their 

stay (Shinagare et al., 2014). With this, it is also likely 

that more AI-based solutions will be developed that 

target hitherto neglected modalities such as nuclear 

imaging techniques and ultrasound. 

The current market for AI-based solutions in 

radiology is spread across a relatively large number 

of companies (Alexander et al., 2020). Potential users 

are likely to expect a streamlined integration of these 

products in their workflows, which can be challenging 

in such a fragmented market. Improved integration 

can be achieved in several different ways, including 

with vendor-neutral marketplaces or by the gradual 

consolidation of providers of AI-based solutions. 

With the expanding use of AI, the issue of trust between 

AI developers, healthcare professionals, regulators, 

and patients will become more relevant. It is therefore 

likely that efforts will intensify to take steps towards 

strengthening that trust. This will potentially include 

raising the expected standards of evidence for AI-

based solutions (Aggarwal, Sounderajah, et al., 2021; 

X. Liu et al., 2019; van Leeuwen et al., 2021; Yusuf et 

al., 2020), making them more transparent through the 

use and improvement of interpretable AI techniques 

(Holzinger et al., 2017; Reyes et al., 2020; “Towards 

Trustable Machine Learning,” 2018), and enhancing 

techniques for maintaining patient data privacy (G. 

Kaissis et al., 2021; G. A. Kaissis et al., 2020). 

Furthermore, while most existing regulations stipulate 

that AI-based algorithms cannot be modified after 

regulatory approval, this is likely to change in the 
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future. The potential for these algorithms to learn from 

data acquired after approval and adapt to changing 

circumstances is a major advantage of AI. Still, 

frameworks for doing so have thus far been lacking in 

the healthcare sector. However, promising ideas have 

recently emerged, including adapting existing hospital 

quality assurance and improvement frameworks to 

monitor AI-based algorithms’ performance and the 

data they are trained on and update the algorithms 

accordingly (Feng et al., 2022). This will likely require 

the development of multidisciplinary teams within 

hospitals consisting of clinicians, IT professionals, and 

biostatisticians who closely collaborate with model 

developers and regulators (Feng et al., 2022).

 

While the obstacles discussed in previous sections 

might slow down the adoption of AI in radiology 

somewhat, the fear of AI potentially replacing 

radiologists is unlikely to be one of them. A recent 

survey from Europe showed that most radiologists 

did not perceive a reduction in their clinical workload 

after adopting AI-based solutions (European Society 

of Radiology (ESR), 2022), likely because, at the same 

time, demand for radiologists’ services has been 

continuously rising. Studies from around the world 

have shown that radiology professionals, particularly 

those with AI exposure and experience, are generally 

optimistic about the role of AI in their practice (Y. Chen 

et al., 2021; Huisman et al., 2021; Ooi et al., 2021; 

Santomartino & Yi, 2022; Scott et al., 2021). 
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Conclusion

AI has shown promise in positively impacting 

virtually every facet of a radiology department’s 

work - from scheduling and protocolling patient 

scans to interpreting images and reaching diagnoses. 

Promising research on AI-based tools in radiology has 

not yet been widely translated to adoption in routine 

practice, however, because of a number of complex, 

partially intertwined issues. Potential solutions exist 

for many of these challenges, but many of these 

solutions require further refinement and testing. 

In the meantime, guidelines are emerging to help 

potential users of AI-based solutions in radiology 

navigate the increasing number of commercial 

products. This encourages their adoption in real-world 

scenarios, thus allowing their true potential to be 

uncovered, as well as their weaknesses to be identified 

and addressed in a safe and effective way. As these 

incremental improvements are made, these tools 

will likely evolve to handle more varied data, become 

integrated into consolidated workflows, become more 

transparent, and ultimately more useful for increasing 

efficiency and improving patient care. 
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